login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039772 Even numbers k such that phi(k) and k-1 are distinct and have a common factor > 1. 7
28, 52, 66, 70, 76, 112, 124, 130, 148, 154, 172, 176, 186, 190, 196, 208, 232, 238, 244, 246, 268, 276, 280, 286, 292, 304, 310, 316, 322, 344, 364, 366, 370, 388, 396, 406, 412, 418, 426, 430, 436, 442, 448, 490, 496, 506, 508, 520, 532, 556, 568, 574 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also this sequence is the union of all possible even Fermat pseudoprimes q to some prime base p>q such that q does not divide p-1. Note that all even nonprime divisors of p-1 are the Fermat pseudoprimes to prime base p. E.g. q = {4,6,12,18,28,36} is a set of even Fermat pseudoprimes to prime base p = 37, but only number q = 28 from this set does not divide p-1 = 36. - Alexander Adamchuk, Jun 16 2007

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.

Eric Weisstein's World of Mathematics, Fermat Pseudoprime

EXAMPLE

phi(28)=12, gcd(12,27)=3.

MAPLE

select(t -> igcd(numtheory:-phi(t), t-1)>1, [seq(n, n=2..1000, 2)]); # Robert Israel, May 15 2017

MATHEMATICA

Select[Range[2, 1000, 2], !CoprimeQ[EulerPhi[#], #-1]&] (* Jean-François Alcover, Sep 19 2018 *)

PROG

(PARI) isok(n) = !(n%2) && (gcd(eulerphi(n), n-1) != 1); \\ Michel Marcus, Mar 15 2019

CROSSREFS

Cf. A000010, A049559.

Sequence in context: A063770 A161923 A309145 * A291855 A181792 A181793

Adjacent sequences:  A039769 A039770 A039771 * A039773 A039774 A039775

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 14:44 EDT 2019. Contains 328318 sequences. (Running on oeis4.)