login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054755 Odd powers of primes of the form q = x^2 + 1 (A002496). 9
2, 5, 8, 17, 32, 37, 101, 125, 128, 197, 257, 401, 512, 577, 677, 1297, 1601, 2048, 2917, 3125, 3137, 4357, 4913, 5477, 7057, 8101, 8192, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A002496 is a subset; the odd power exponent is 1.

From Bernard Schott, Mar 16 2019: (Start)

The terms of this sequence are exactly the integers with only one prime factor and whose Euler's totient is square, so this sequence is a subsequence of A039770. The primitive terms of this sequence are the primes of the form q = x^2 + 1, which are exactly in A002496.

Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.

If q prime = x^2 + 1, phi(q) = x^2, phi(q^(2k+1)) = (x*q^k)^2, and cototient(q) = 1^2, cototient(q^(2k+1)) = (q^k)^2. (End)

LINKS

David A. Corneth, Table of n, a(n) for n = 1..18864 (terms <= 10^11)

Bernard Schott, Subfamilies and subsequences

FORMULA

A000010(a(n)) = (q^(2k))*(q-1) and A051953(a(n)) = q^(2k), where q = 1 + x^2 and is prime.

EXAMPLE

a(20) = 3125 = 5^5, q = 5 = 4^2+1 and Phi(3125) = 2500 = 50^2, cototient(3125) = 3125 - Phi(3125) = 625 = 25^2.

MATHEMATICA

Select[Range[10^5], And[PrimeNu@ # == 1, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 31 2019 *)

PROG

(PARI) isok(m) = (omega(m)==1) && issquare(eulerphi(m)); \\ Michel Marcus, Mar 16 2019

(PARI) upto(n) = {my(res = List([2]), q); forstep(i = 2, sqrtint(n), 2, if(isprime(i^2 + 1), listput(res, i^2 + 1) ) ); q = #res; forstep(i = 3, logint(n, 2), 2, for(j = 1, q, c = res[j]^i; if(c <= n, listput(res, c) , next(2) ) ) ); listsort(res); res } \\ David A. Corneth, Mar 17 2019

CROSSREFS

Cf. A000010, A051953, A039770, A063752, A054754, A334745 (with 2 distinct prime factors), A306908 (with 3 distinct prime factors).

Subsequences: A002496 (primitive primes: m^2+1), A004171 (2^(2k+1)), A013710 (5^(2k+1)), A013722 (17^(2k+1)), A262786 (37^(2k+1)).

Sequence in context: A259580 A316795 A054754 * A093331 A162216 A032158

Adjacent sequences:  A054752 A054753 A054754 * A054756 A054757 A054758

KEYWORD

nonn

AUTHOR

Labos Elemer, Apr 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 20:57 EST 2020. Contains 338755 sequences. (Running on oeis4.)