login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038076
Number of rooted identity trees with 3-colored leaves.
4
3, 3, 6, 16, 46, 142, 461, 1542, 5278, 18417, 65218, 233816, 846938, 3094943, 11395715, 42237936, 157465847, 590075550, 2221391912, 8397223487, 31861406058, 121300625969, 463233477550, 1774034788166, 6811612470692, 26216538077715, 101125406981562
OFFSET
1,1
FORMULA
Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.0814589930714884560076189705..., c = 0.4583632659157592121544633778... . - Vaclav Kotesovec, Sep 06 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, 3*n, b(n-1, n-1)):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 01 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<2, 3*n, b[n-1, n-1]];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A348539 A095356 A123104 * A123286 A132818 A134068
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 04 1999
STATUS
approved