The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132818 The matrix product A127773 * A001263 of infinite lower triangular matrices. 3
 1, 3, 3, 6, 18, 6, 10, 60, 60, 10, 15, 150, 300, 150, 15, 21, 315, 1050, 1050, 315, 21, 28, 588, 2940, 4900, 2940, 588, 28, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 55, 2475, 29700, 138600, 291060 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA T(n,k) = A000217(n) * A001263(n,k). Let a(n) = A006472(n), the 'triangular' factorial numbers. Then a(n)/(a(k)*a(n-k)) produces the present triangle (with a different offset). - Peter Bala, Dec 07 2011 T(n,k) = 1/2*(n+1-k)*C(n+1,k)*C(n,k-1), for n,k >= 1. O.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(3/2) = x*y + x^2*(3*y + 3*y^2) + x^3*(6*y + 18*y^2 + 6*y^3) + .... Cf. A008459 with o.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(1/2). Sum {k = 1..n-1} T(n,k)*2^(n-k) = A002695(n). - Peter Bala, Apr 10 2012 EXAMPLE First few rows of the triangle are: 1; 3, 3; 6, 18, 6; 10, 60, 60, 10; 15, 150, 300, 150, 15; 21, 315, 1050, 1050, 315, 21; ... MAPLE A132818 := proc(n, k)     (n+1-k)*binomial(n+1, k)*binomial(n, k-1)/2 ; end proc: # R. J. Mathar, Jul 29 2015 CROSSREFS Cf. A127773, A001263, A002457 (row sums), A006472. A002695, A008459. Sequence in context: A123104 A038076 A123286 * A134068 A025256 A052560 Adjacent sequences:  A132815 A132816 A132817 * A132819 A132820 A132821 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, Sep 02 2007 EXTENSIONS Corrected by R. J. Mathar, Jul 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 24 21:12 EDT 2020. Contains 338010 sequences. (Running on oeis4.)