login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134068 a(n) = 2*a(n-2) + 4*a(n-3), with initial terms 0, 3, 3. 1
0, 3, 3, 6, 18, 24, 60, 120, 216, 480, 912, 1824, 3744, 7296, 14784, 29568, 58752, 118272, 235776, 471552, 944640, 1886208, 3775488, 7550976, 15095808, 30203904, 60395520, 120791040, 241606656, 483164160, 966377472, 1932754944, 3865411584, 7731019776, 15461842944 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,2,4).

FORMULA

From Andrew Howroyd, Jan 03 2020: (Start)

G.f.: 3*x*(1 + x)/((1 - 2*x)*(1 + 2*x + 2*x^2)).

a(n) = 3*A134136(n). (End)

PROG

(PARI) concat([0], Vec(3*(1 + x)/((1 - 2*x)*(1 + 2*x + 2*x^2)) + O(x^40))) \\ Andrew Howroyd, Jan 03 2020

(MAGMA) a:=[0, 3, 3]; [n le 3 select a[n] else 2*Self(n-2) + 4*Self(n-3):n in [1..35]]; // Marius A. Burtea, Jan 03 2020

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 35); [0] cat Coefficients(R!( 3*x*(1 + x)/((1 - 2*x)*(1 + 2*x + 2*x^2)))); // Marius A. Burtea, Jan 03 2020

CROSSREFS

Cf. A134136, A134654.

Sequence in context: A038076 A123286 A132818 * A025256 A052560 A147836

Adjacent sequences:  A134065 A134066 A134067 * A134069 A134070 A134071

KEYWORD

nonn

AUTHOR

Paul Curtz, Jan 29 2008

EXTENSIONS

a(12) corrected and terms a(13) and beyond from Andrew Howroyd, Jan 03 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 14:21 EST 2020. Contains 338624 sequences. (Running on oeis4.)