This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038025 Winner of n-th Littlewood Frog Race. 8
 1, 1, 1, 1, 4, 1, 1, 1, 1, 9, 10, 1, 12, 1, 1, 9, 1, 1, 1, 1, 4, 21, 22, 1, 24, 25, 1, 27, 27, 1, 1, 1, 16, 1, 16, 35, 32, 1, 38, 9, 10, 25, 33, 25, 1, 45, 27, 1, 25, 49, 44, 25, 24, 1, 1, 9, 34, 27, 1, 49, 24, 1, 58, 57, 64, 49, 8, 49, 65, 51, 48, 49, 72, 69, 68 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For 0 < k <= n, gcd(n,k) = 1, let P(n,k) be the smallest prime of the form a*n+k, with a >= 0. "Frog" k0 is said to win "race" n if P(n,k0) is largest of the phi(n) values P(n,k). In case of draws of P(n,k) values take the largest k.- R. J. Mathar, Jul 26 2015 LINKS MAPLE A038025P := proc(n, k)     local a;     for a from 0 do         if isprime(a*n+k) then             return a;         end if;     end do: end proc: A038025 := proc(n)     local a, phimax, phi, k ;     a :=0 ;     phimax := 0 ;     for k from 1 to n do         if igcd(k, n) = 1 then             phi := A038025P(n, k) ;             if phi >= phimax then                 a := k;                 phimax := phi;             end if;         end if;     od;     a ; end proc: seq(A038025(n), n=1..100) ; # R. J. Mathar, Jul 26 2015 CROSSREFS Cf. A038026, A038029 (records). Sequence in context: A119350 A016528 A056623 * A079982 A265143 A181873 Adjacent sequences:  A038022 A038023 A038024 * A038026 A038027 A038028 KEYWORD nonn AUTHOR Christian G. Bower from a problem by David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 07:18 EDT 2019. Contains 324347 sequences. (Running on oeis4.)