login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038024
Number of k's such that A002034(k) = n.
3
1, 1, 2, 4, 8, 14, 30, 36, 64, 110, 270, 252, 792, 1008, 1440, 1344, 5376, 3936, 14688, 11664, 19760, 35200, 96000, 50880, 97152, 192192, 145152, 239904, 917280, 498240, 2332800, 864000, 2334720, 4300800, 4257792, 3172608
OFFSET
1,3
LINKS
Paul Erdős, S. W. Graham, Alexsandr Ivić, and Carl Pomerance, On the number of divisors of n!, Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, ed. by B. C. Berndt, H. G. Diamond, A. J. Hildebrand, Birkhauser 1996, pp. 337-355.
J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function
FORMULA
a(n) = A027423(n)-A027423(n-1) = A000005(A000142(n))-A000005(A000142(n-1)) i.e., number of divisors of n! which are not divisors of (n-1)! [for n>1]. - Henry Bottomley, Oct 22 2001
Erdős, Graham, Ivić, & Pomerance show that the average order of log a(n) is c log n/(log log n)^2 with c around 0.6289. - Charles R Greathouse IV, Jul 21 2015
MATHEMATICA
a[n_] := DivisorSigma[0, n!] - DivisorSigma[0, (n-1)!]; a[1] = 1;
Array[a, 36] (* Jean-François Alcover, Sep 17 2020 *)
PROG
(PARI) a(n)=numdiv(n!)-numdiv((n-1)!) \\ Charles R Greathouse IV, Jul 21 2015
CROSSREFS
Cf. A046021.
Sequence in context: A244933 A118560 A187813 * A337500 A061297 A130711
KEYWORD
nonn
STATUS
approved