login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038024 Number of k's such that A002034(k) = n. 3
1, 1, 2, 4, 8, 14, 30, 36, 64, 110, 270, 252, 792, 1008, 1440, 1344, 5376, 3936, 14688, 11664, 19760, 35200, 96000, 50880, 97152, 192192, 145152, 239904, 917280, 498240, 2332800, 864000, 2334720, 4300800, 4257792, 3172608 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..36.

Paul Erdős, S. W. Graham, Alexsandr Ivić, and Carl Pomerance, On the number of divisors of n!, Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, ed. by B. C. Berndt, H. G. Diamond, A. J. Hildebrand, Birkhauser 1996, pp. 337-355.

J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function

FORMULA

a(n) = A027423(n)-A027423(n-1) = A000005(A000142(n))-A000005(A000142(n-1)) i.e., number of divisors of n! which are not divisors of (n-1)! [for n>1]. - Henry Bottomley, Oct 22 2001

Erdős, Graham, Ivić, & Pomerance show that the average order of log a(n) is c log n/(log log n)^2 with c around 0.6289. - Charles R Greathouse IV, Jul 21 2015

MATHEMATICA

a[n_] := DivisorSigma[0, n!] - DivisorSigma[0, (n-1)!]; a[1] = 1;

Array[a, 36] (* Jean-François Alcover, Sep 17 2020 *)

PROG

(PARI) a(n)=numdiv(n!)-numdiv((n-1)!) \\ Charles R Greathouse IV, Jul 21 2015

CROSSREFS

Cf. A046021.

Sequence in context: A244933 A118560 A187813 * A337500 A061297 A130711

Adjacent sequences:  A038021 A038022 A038023 * A038025 A038026 A038027

KEYWORD

nonn

AUTHOR

Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:42 EST 2020. Contains 338943 sequences. (Running on oeis4.)