login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061297 a(n) = Sum_{ r = 0 to n} L(n,r), where L(n,r) (A067049) = LCM (n, n-1, n-2, ..., n-r+1)/ LCM ( 1,2,3,...r). 11
1, 2, 4, 8, 14, 32, 39, 114, 166, 266, 421, 1608, 1005, 3980, 6894, 4206, 8666, 40904, 49559, 315478, 162321, 79180, 269878, 1647124, 937553, 1810092, 8445654, 7791356, 3978238, 33071544, 19578861, 283536170, 327438714, 117635956, 742042967, 154748984, 88779589, 1532487536, 10514107742, 3761632498 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The following sequences all appear to have the same parity: A003071, A029886, A061297, A092524, A093431, A102393, A104258, A122248, A128975. - Jeremy Gardiner, Dec 28 2008

REFERENCES

Amarnath Murthy, Some Notions On Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

LINKS

Table of n, a(n) for n=0..39.

Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193, 2014

EXAMPLE

a(0)= 1, a(4)= 14: we have L(4,0)= 1, L(4,1)= 4, L(4,2)= 6, L(4,3)= 2, L(4,4)=  1. For r = 0 to 4, sigma {L(4,r)}= 1 + 4 + 6 + 2 + 1= 14.

PROG

(PARI) tlcm(n, r) = {nt = 1; for (k = n-r+1, n, nt = lcm(nt, k); ); dt = 1; for (k = 1, r, dt = lcm(dt, k); ); return (nt/dt); }

a(n) = sum(r = 0, n , tlcm(n, r)); \\ Michel Marcus, Sep 14 2013

CROSSREFS

Row sums of A067049.

Sequence in context: A118560 A187813 A038024 * A130711 A093483 A028398

Adjacent sequences:  A061294 A061295 A061296 * A061298 A061299 A061300

KEYWORD

nonn,easy

AUTHOR

Amarnath Murthy, Apr 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.