login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037944 Coefficients of unique normalized cusp form Delta_18 of weight 18 for full modular group. 4
1, -528, -4284, 147712, -1025850, 2261952, 3225992, -8785920, -110787507, 541648800, -753618228, -632798208, 2541064526, -1703323776, 4394741400, -14721941504, -5429742318, 58495803696, 1487499860, -151530355200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1000

Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]

Fernando Q. Gouvêa, Non-ordinary primes: a story, Experimental Mathematics, Volume 6, Issue 3 (1997), 195-205.

S. C. Milne, Hankel determinants of Eisenstein series, preprint, arXiv:0009130 [math.NT], 2000.

H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.

Index entries for sequences related to modular groups

FORMULA

Convolution product of A000594 and A013973. - Michael Somos, Mar 18 2012

a(n) == A013965(n) mod 43867. - Seiichi Manyama, Feb 02 2017

G.f.: 691/(1728*250) * (E_4(q)*E_14(q) - E_6(q)*E_12(q)). - Seiichi Manyama, Jul 25 2017

EXAMPLE

G.f. = q - 528*q^2 - 4284*q^3 + 147712*q^4 - 1025850*q^5 + 2261952*q^6 + ...

MATHEMATICA

terms = 20;

E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];

E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];

E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];

E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];

(691/(1728*250))*(E4[x]*E14[x] - E6[x]*E12[x]) + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *)

PROG

(PARI)  {a(n) = if( n<0, 0, polcoeff( x * eta(x + x * O(x^n))^24 * (1 - 504 * sum( k=1, n, sigma( k, 5) * x^k)), n))}; /* Michael Somos, Mar 18 2012 */

CROSSREFS

Cf. A000594, A013965, A013973, A027364, A037945, A037946, A037947, A290048.

Sequence in context: A158365 A076580 A304512 * A282096 A223253 A233103

Adjacent sequences:  A037941 A037942 A037943 * A037945 A037946 A037947

KEYWORD

sign

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 19:58 EST 2019. Contains 319251 sequences. (Running on oeis4.)