The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037946 Coefficients of unique normalized cusp form Delta_22 of weight 22 for full modular group. 6
 1, -288, -128844, -2014208, 21640950, 37107072, -768078808, 1184071680, 6140423133, -6232593600, -94724929188, 259518615552, -80621789794, 221206696704, -2788306561800, 3883087691776, 3052282930002 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES G. Harder. "A Congruence Between a Siegel and an Elliptic Modular Form." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 247-262. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1000 Fernando Q. Gouvêa, Non-ordinary primes: a story, Experimental Mathematics, Volume 6, Issue 3 (1997), 195-205. S. C. Milne, Hankel determinants of Eisenstein series, preprint, arXiv:0009130 [math.NT], 2000. FORMULA a(n) == A013969(n) mod 77683. - Seiichi Manyama, Feb 03 2017 G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_4(q) * E_6(q). - Seiichi Manyama, Jun 09 2017 G.f.: 691/(1728*250) * (E_8(q)*E_14(q) - E_10(q)*E_12(q)). - Seiichi Manyama, Jul 25 2017 EXAMPLE q^2 - 288*q^4 - ... MATHEMATICA terms = 17; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}]; ((E4[x]^3 - E6[x]^2)/12^3)*E4[x]*E6[x] + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *) CROSSREFS Cf. A000594 ((E_4(q)^3 - E_6(q)^2)/12^3), A004009 (E_4(q)), A013969, A013973 (E_6(q)), A290181. Sequence in context: A268873 A069329 A300052 * A282102 A159299 A008695 Adjacent sequences:  A037943 A037944 A037945 * A037947 A037948 A037949 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 23:52 EDT 2021. Contains 343156 sequences. (Running on oeis4.)