login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037945 Coefficients of unique normalized cusp form Delta_20 of weight 20 for full modular group. 6
1, 456, 50652, -316352, -2377410, 23097312, -16917544, -383331840, 1403363637, -1084098960, -16212108, -16023861504, 50421615062, -7714400064, -120420571320, -8939761664, 225070099506, 639933818472 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1000

Fernando Q. Gouvêa, Non-ordinary primes: a story, Experimental Mathematics, Volume 6, Issue 3 (1997), 195-205.

S. C. Milne, Hankel determinants of Eisenstein series, preprint, arXiv:0009130 [math.NT], 2000.

Index entries for sequences related to modular groups

FORMULA

a(n) == A013967(n) mod 174611. - Seiichi Manyama, Feb 02 2017

G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_4(q)^2. - Seiichi Manyama, Jun 09 2017

G.f.: 691/(1728*441) * (E_8(q)*E_12(q) - E_10(q)^2). - Seiichi Manyama, Jul 25 2017

EXAMPLE

q^2 + 456*q^4 + ...

MATHEMATICA

terms = 18;

E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];

E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];

((E4[x]^3 - E6[x]^2)/12^3)*E4[x]^2 + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *)

CROSSREFS

Cf. A013967, A290180.

Sequence in context: A223750 A048110 A282101 * A278731 A282047 A278433

Adjacent sequences:  A037942 A037943 A037944 * A037946 A037947 A037948

KEYWORD

sign

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 13:42 EST 2019. Contains 319271 sequences. (Running on oeis4.)