

A037308


Numbers n such that (sum of base 2 digits of n) = (sum of base 10 digits of n).


16



0, 1, 20, 21, 122, 123, 202, 203, 222, 223, 230, 231, 302, 303, 410, 411, 502, 503, 1130, 1131, 1150, 1151, 1202, 1203, 1212, 1213, 1230, 1231, 1300, 1301, 1402, 1403, 1502, 1503, 1510, 1511, 2006, 2007, 2032, 2033, 2102, 2103, 2200, 2201, 3006, 3007, 3012
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A007953(a(n)) = A000120(a(n)); A180018(a(n)) = 0. [Reinhard Zumkeller, Aug 06 2010]
n is in the sequence iff n+(1)^n is in the sequence. [Robert Israel, Mar 25 2013]


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

122 is a member, since digitalsum_2(122)=5=digitalsum_10(122).


MAPLE

N:= 10000; # to get all elements up to N
select(x > (convert(convert(x, base, 10), `+`)convert(convert(x, base, 2), `+`)=0), [$0..N]); # Robert Israel, Mar 25 2013


PROG

(PARI) for(n=1, 3500, s=ceil(log(n)/log(10)); b=binary(n):l=length(b); if(sum(i=1, l, component(b, i))==sum(i=0, s1, floor(n/10^i)10*floor(n/10^(i+1))), print1(n, ", ")))
(PARI) is(n)=hammingweight(n)==dsum(n) \\ Charles R Greathouse IV, Sep 25 2012


CROSSREFS

Cf. A000040, A007953, A054899, A131451, A133620, A133900, A134599, A135110.
Sequence in context: A041820 A041826 A041824 * A041828 A041830 A041832
Adjacent sequences: A037305 A037306 A037307 * A037309 A037310 A037311


KEYWORD

nonn,base


AUTHOR

Clark Kimberling


EXTENSIONS

Edited by N. J. A. Sloane Nov 29 2008 at the suggestion of Zak Seidov.


STATUS

approved



