login
A133900
a(n) = period of the sequence {b(m), m>=0}, defined by b(m):=binomial(m+n,n) mod n.
78
1, 4, 9, 16, 25, 72, 49, 64, 81, 400, 121, 864, 169, 784, 675, 256, 289, 2592, 361, 1600, 1323, 3872, 529, 3456, 625, 5408, 729, 3136, 841, 324000, 961, 1024, 9801, 18496, 6125, 31104, 1369, 23104, 13689, 32000, 1681, 254016, 1849, 15488, 30375, 33856
OFFSET
1,2
COMMENTS
This is the analog of the sequence of Pisano periods (A001175) for binomial factors.
n^2 always divides a(n).
A prime p is a factor of a(n) if and only if it is a factor of n (i.e., a(n) and n have the same prime factors).
LINKS
FORMULA
a(n)=n^2 if n is a prime or a power of a prime.
EXAMPLE
a(3)=9 since binomial(m+3,3) mod 3, m>=0, is periodic with period length 3^2=9 (see A133883).
a(6)=72 since binomial(m+6,6) mod 6, m>=0, is periodic with period length 4*6^2=72 (see A133886).
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Oct 15 2007, Oct 20 2007
STATUS
approved