OFFSET
1,2
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 1..102
FORMULA
The following formulas are given for general bases p>1:
a(n)=product{1<=k<=n, dp_p(k)} where dp_p(k) = product of the nonzero digits of k in base p.
a(n)=(n mod p)!*product{0<j<=log_p(n)}(p-1)!^(floor(n/p^j)*p^(j-1)) * product{0<j<=log_p(n),(floor(n/p^j)mod p)>0}(floor(n/p^j)mod p)^(1+(n mod p^j))*((floor(n/p^j)mod p)-1)!^(p^j).
Recurrence: a(n+k*p^m)=a(n)*k^n*a(k*p^m) for 0<=k<p, 0<=n<p^m.
a(n)=n!, for 0<=n<p.
a(k*p^m)=k*(p-1)!^(k*m*p^(m-1))*(k-1)!^(p^m) for 0<=k<p.
a(n)=(p-1)!^((m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)=(p-1)!^(1+2*p+3*p^2+...+m*p^(m-1)) for n=1+p+p^2+...+p^m.
a(n)=(p-1)!^(k*(m*p^(m+1)-(m+1)*p^m+1)/(p-1)^2)*(k-1)!^(p*(p^m-1)/(p-1))*k^(k*(p^(m+1)-(m+1)*p+m)/(p-1)^2)*k!*k^m, for n=k*(1+p+p^2+...+p^m).
For p=10: a(10^n)=9!^(n*10^(n-1)).
Asymptotic behavior: a(10^n)=10^(0.5559763...*n*10^n). Hence it grows slower than the factorial A000142(10^n) for which we have (10^n)!=10^((n-0.43429448...)*10^n+n/2+0.3990899...+o(1/n)). Example: a(1000) has 1668 digits, whereas 1000! has 2568 digits.
EXAMPLE
a(12)=dp_10(1)*dp_10(2)*dp_10(3)*...*dp_10(11)*dp_10(12)=1*2*3*4*5*6* 7*8*9*1*(1*1)*(1*2).
a(345)=3*4*5*3^45*4^5*(3-1)!^100*(4-1)!^10*(5-1)!^1*9!^64.
a(1000)=9!^300. a(1111)=9!^321.
MAPLE
with transforms;
f:=proc(n) option remember; if n = 0 then 1 else f(n-1)*digprod0(n); fi; end; [seq(f(n), n=0..40)]; # N. J. A. Sloane, Oct 12 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jul 11 2007
EXTENSIONS
New b-file from Hieronymus Fischer, Sep 10 2007
2 typos in the formula section removed by Hieronymus Fischer, Dec 05 2011
STATUS
approved