login
A036893
Number of partitions of 5n such that cn(0,5) < cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).
5
0, 0, 1, 5, 18, 51, 131, 309, 694, 1494, 3117, 6320, 12514, 24234, 46016, 85790, 157301, 283982, 505432, 887692, 1539969, 2640920, 4480467, 7524824, 12518126, 20638663, 33739438, 54713975, 88052156, 140676765, 223199915, 351795463, 550981974
OFFSET
1,4
COMMENTS
Alternatively, number of partitions of 5n such that cn(0,5) < cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036888(n) - A202088(n)
a(n) = A036883(n) - A036886(n)
CROSSREFS
Sequence in context: A270978 A272512 A257055 * A332953 A125641 A006479
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 11 2011
STATUS
approved