login
A036894
Number of partitions of 5n such that cn(1,5) = cn(4,5) < cn(0,5) < cn(2,5) = cn(3,5).
5
0, 0, 1, 4, 13, 33, 80, 179, 390, 820, 1686, 3379, 6639, 12771, 24125, 44771, 81774, 147112, 261038, 457202, 791249, 1353989, 2292738, 3843988, 6385054, 10512627, 17164661, 27804382, 44701255, 71351803, 113113659, 178147253, 278818420, 433764555
OFFSET
1,4
COMMENTS
Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) < cn(0,5) < cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036890(n) - A036892(n)
a(n) = A036885(n) - A036886(n)
CROSSREFS
Sequence in context: A054039 A302082 A124669 * A227122 A176361 A322599
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 11 2011
STATUS
approved