login
A036895
Number of partitions of 5n such that cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5) < cn(0,5).
6
0, 0, 1, 4, 12, 29, 67, 146, 313, 654, 1342, 2691, 5291, 10184, 19237, 35680, 65102, 116967, 207241, 362423, 626265, 1070100, 1809513, 3029902, 5026778, 8267109, 13484325, 21821771, 35051459, 55901678, 88550088, 139355911, 217949589, 338837468
OFFSET
1,4
COMMENTS
Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5) < cn(0,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036891(n) - A036892(n)
a(n) = A036887(n) - A202086(n)
CROSSREFS
Sequence in context: A260546 A062421 A036889 * A309297 A296645 A280007
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 11 2011
STATUS
approved