OFFSET
1,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (3 n^4 - 10 n^3 + 9 n^2 - 2 n)/3.
Equals 4 * A052149(n-1). [N. J. A. Sloane, Feb 20 2005]
G.f.: 8*x^3*(2+x)/(1-x)^5. [Colin Barker, Apr 17 2012]
EXAMPLE
There are 16 ways of putting distinct queens on 3 X 3 so that neither can capture the other.
MATHEMATICA
CoefficientList[Series[8*x^3*(2+x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 22 2012 *)
PROG
(Magma) [(3*n^4-10*n^3+9*n^2-2*n)/3: n in [1..40]]; // Vincenzo Librandi, Apr 22 2012
(Magma) I:=[0, 0, 16, 88, 280]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 22 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved