OFFSET
1,2
COMMENTS
a(n) = 2 * A172123(n). - Vaclav Kotesovec, Nov 28 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (3*n^4 - 4*n^3 + 3*n^2 - 2*n)/3.
a(1)=0, a(2)=8, a(3)=52, a(4)=184, a(5)=480, a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Harvey P. Dale, Nov 19 2011
G.f.: -4*x^2*(x+1)*(x+2)/(x-1)^5. - Colin Barker, Jan 09 2013
EXAMPLE
There are 52 ways of putting 2 distinct bishops on 3 X 3 so that neither can capture the other.
MATHEMATICA
Table[(3n^4-4n^3+3n^2-2n)/3, {n, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 8, 52, 184, 480}, 40] (* Harvey P. Dale, Nov 19 2011 *)
PROG
(Magma) [(3*n^4-4*n^3+3*n^2-2*n)/3: n in [1..35]]; // Vincenzo Librandi, May 04 2013
(PARI) a(n)=(3*n^4-4*n^3+3*n^2-2*n)/3; \\ Joerg Arndt, May 04 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved