login
A035288
Number of ways to place a non-attacking white and black bishop on n X n chessboard.
2
0, 8, 52, 184, 480, 1040, 1988, 3472, 5664, 8760, 12980, 18568, 25792, 34944, 46340, 60320, 77248, 97512, 121524, 149720, 182560, 220528, 264132, 313904, 370400, 434200, 505908, 586152, 675584, 774880, 884740, 1005888, 1139072, 1285064
OFFSET
1,2
COMMENTS
a(n) = 2 * A172123(n). - Vaclav Kotesovec, Nov 28 2011
FORMULA
a(n) = (3*n^4 - 4*n^3 + 3*n^2 - 2*n)/3.
a(1)=0, a(2)=8, a(3)=52, a(4)=184, a(5)=480, a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Harvey P. Dale, Nov 19 2011
G.f.: -4*x^2*(x+1)*(x+2)/(x-1)^5. - Colin Barker, Jan 09 2013
EXAMPLE
There are 52 ways of putting 2 distinct bishops on 3 X 3 so that neither can capture the other.
MATHEMATICA
Table[(3n^4-4n^3+3n^2-2n)/3, {n, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 8, 52, 184, 480}, 40] (* Harvey P. Dale, Nov 19 2011 *)
PROG
(Magma) [(3*n^4-4*n^3+3*n^2-2*n)/3: n in [1..35]]; // Vincenzo Librandi, May 04 2013
(PARI) a(n)=(3*n^4-4*n^3+3*n^2-2*n)/3; \\ Joerg Arndt, May 04 2013
CROSSREFS
Cf. A172123.
Sequence in context: A180319 A199706 A302318 * A303012 A024179 A302816
KEYWORD
nonn,easy
STATUS
approved