The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035098 Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, ..., 1, 2. 17
 1, 2, 4, 11, 36, 135, 566, 2610, 13082, 70631, 407846, 2504071, 16268302, 111378678, 800751152, 6027000007, 47363985248, 387710909055, 3298841940510, 29119488623294, 266213358298590, 2516654856419723, 24566795704844210 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A035098 and A000070 are near the two ends of a spectrum. Another way to look at A000070 is as the number of partitions of an n-multiset with multiplicities n-1, 1. The very ends are the number of partitions and the Stirling numbers of the second kind, which count the n-multiset partitions with multiplicities n and 1,1,1,...,1, respectively. Intermediate sequences are the number of ways of partitioning an n-multiset with multiplicities some partition of n. REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7. M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5. Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4. FORMULA Sum_{k=0..n} Stirling2(n, k)*((k+1)*(k+2)/2+1). E.g.f.: 1/2*(1+exp(x))^2*exp(exp(x)-1). (1/2)*(Bell(n)+Bell(n+1)+Bell(n+2)). - Vladeta Jovovic, Sep 23 2003 EXAMPLE a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}. MAPLE with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007 MATHEMATICA f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0] f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0] Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *) Join[{1}, Total[#]/2&/@Partition[BellB[Range[0, 30]], 3, 1]] (* Harvey P. Dale, Jan 02 2019 *) CROSSREFS Cf. A000070, A000110, A059606. Row sums of A241500. Column 1 of array in A322765. Sequence in context: A193058 A179379 A086611 * A328425 A174107 A253927 Adjacent sequences:  A035095 A035096 A035097 * A035099 A035100 A035101 KEYWORD nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Sep 23 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 08:29 EDT 2021. Contains 342977 sequences. (Running on oeis4.)