|
|
A087648
|
|
a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).
|
|
4
|
|
|
1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Sum of last number in all set partitions of n+1. E.g. The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}, so a(2) = 1+2+1+2+3 = 9. - Franklin T. Adams-Watters, Jun 07 2006
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
|
|
MATHEMATICA
|
f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
|
|
PROG
|
(MAGMA) [(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
|
|
CROSSREFS
|
Cf. A000110, A035098, A059606.
Main diagonal of A120057, row sums of A120095.
Column 1 of array in A322770.
Sequence in context: A073724 A151037 A066571 * A086616 A040027 A182968
Adjacent sequences: A087645 A087646 A087647 * A087649 A087650 A087651
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladeta Jovovic, Sep 23 2003
|
|
STATUS
|
approved
|
|
|
|