login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033549 Numbers n such that sum of digits of n-th prime equals sum of digits of n. 11
32, 56, 88, 175, 176, 182, 212, 218, 227, 248, 293, 295, 323, 331, 338, 362, 377, 386, 394, 397, 398, 409, 439, 446, 457, 481, 499, 508, 563, 571, 595, 599, 635, 637, 655, 671, 728, 751, 752, 755, 761, 767, 779, 820, 821, 826, 827, 847, 848, 857, 869, 878 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A090431(a(n)) = 0, A007953(a(n)) = A007605(a(n)).

REFERENCES

Proposed by G. L. Honaker, Jr.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

EXAMPLE

131 is the 32nd prime and sum of digits of both is 5.

MATHEMATICA

Select[Range[1000], Total[IntegerDigits[#]]==Total[IntegerDigits[ Prime[#]]]&] (* Harvey P. Dale, May 05 2011 *)

PROG

(Haskell)

a033549 n = a033549_list !! (n-1)

a033549_list = filter ((== 0) . a090431) [1..]

-- Reinhard Zumkeller, Mar 16 2014

(PARI) is(n, p=prime(n))=sumdigits(n)==sumdigits(p) \\ Charles R Greathouse IV, Feb 07 2017

(Python)

from sympy.ntheory.factor_ import digits

from sympy import prime

print [n for n in xrange(1, 1001) if sum(digits(n)[1:])==sum(digits(prime(n))[1:])] # Indranil Ghosh, Jun 27 2017

CROSSREFS

Cf. A033548, A071600.

Sequence in context: A118617 A259716 A033907 * A117478 A008434 A130447

Adjacent sequences:  A033546 A033547 A033548 * A033550 A033551 A033552

KEYWORD

nonn,base,nice

AUTHOR

Calculated by Jud McCranie

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 18:03 EST 2018. Contains 318049 sequences. (Running on oeis4.)