login
A071600
Numbers n such that n and prime(n) have the same number of 1's in their binary representation.
9
1, 3, 13, 19, 21, 23, 25, 30, 44, 45, 47, 57, 60, 61, 71, 77, 98, 99, 101, 103, 107, 108, 110, 118, 121, 125, 158, 159, 178, 179, 184, 186, 187, 188, 209, 215, 218, 221, 237, 244, 246, 247, 248, 249, 251, 279, 287, 312, 334, 335, 346, 350, 359, 361, 362, 365
OFFSET
1,2
COMMENTS
a(n) = A049084(A072439(n)); A000120(a(n)) = A000120(A072439(n)) = A014499(n). - Reinhard Zumkeller, Jun 17 2002
A090455(a(n))=0, A000120(a(n))=A014499(a(n)).
LINKS
EXAMPLE
221=11011101 in base 2, prime(221)=1381=10101100101 in base 2, both have 6 "1's" in their binary representation, hence 221 is in the sequence.
MATHEMATICA
Select[Range[400], DigitCount[#, 2, 1]==DigitCount[Prime[#], 2, 1]&] (* Harvey P. Dale, Mar 09 2015 *)
PROG
(PARI) for(n=1, 1000, s=1; if(sum(i=1, length(binary(n)), component(binary(n), i))==sum(i=1, length(binary(prime(n))), component(binary(prime(n)), i)), print1(n, ", ")))
(PARI) is(n)=hammingweight(n)==hammingweight(prime(n)) \\ Charles R Greathouse IV, Mar 07 2013
CROSSREFS
Cf. A033549.
Sequence in context: A024685 A024474 A024599 * A260802 A338341 A045435
KEYWORD
base,easy,nonn
AUTHOR
Benoit Cloitre, Jun 01 2002
STATUS
approved