login
A033317
Smallest positive integer y satisfying the Pell equation x^2 - D*y^2 = 1 for nonsquare D.
18
2, 1, 4, 2, 3, 1, 6, 3, 2, 180, 4, 1, 8, 4, 39, 2, 12, 42, 5, 1, 10, 5, 24, 1820, 2, 273, 3, 4, 6, 1, 12, 6, 4, 3, 320, 2, 531, 30, 24, 3588, 7, 1, 14, 7, 90, 9100, 66, 12, 2, 20, 2574, 69, 4, 226153980, 8, 1, 16, 8, 5967, 4, 936, 30, 413, 2, 267000, 430, 3, 6630, 40, 6, 9
OFFSET
1,1
COMMENTS
D = D(n) = A000037(n). - Wolfdieter Lang, Oct 04 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Laurent Beeckmans, Squares Expressible as Sum of Consecutive Squares, Am. Math. Monthly, Volume 101, Number 5, page 442, May 1994.
S. R. Finch, Class number theory [Cached copy, with permission of the author]
Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris. See column B page 19.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Pell Equation
FORMULA
a(n) = sqrt((A033313(n)^2 - 1)/A000037(n)). - Jinyuan Wang, Jul 09 2020
MAPLE
F:= proc(d) local r, Q; uses numtheory;
Q:= cfrac(sqrt(d), 'periodic', 'quotients'):
r:= nops(Q[2]);
if r::odd then
denom(cfrac([op(Q[1]), op(Q[2]), op(Q[2][1..-2])]))
else
denom(cfrac([op(Q[1]), op(Q[2][1..-2])]));
fi
end proc:
map(F, remove(issqr, [$1..100])); # Robert Israel, May 17 2015
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2n]; s = FromContinuedFraction[ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
A033317 = DeleteCases[PellSolve /@ Range[100], {}][[All, 2]] (* Jean-François Alcover, Nov 21 2020, after N. J. A. Sloane in A002349 *)
CROSSREFS
Cf. A000037, A033313 (for the x's), A077232, A077233.
Sequence in context: A265911 A363893 A078458 * A183200 A326732 A305422
KEYWORD
nonn
STATUS
approved