login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077232 a(n) is smallest natural number satisfying Pell equation a^2 - d(n)*b^2= +1 or = -1, with d(n)=A000037(n) (a nonsquare). Corresponding smallest b(n)=A077233(n). 8
1, 2, 2, 5, 8, 3, 3, 10, 7, 18, 15, 4, 4, 17, 170, 9, 55, 197, 24, 5, 5, 26, 127, 70, 11, 1520, 17, 23, 35, 6, 6, 37, 25, 19, 32, 13, 3482, 199, 161, 24335, 48, 7, 7, 50, 649, 182, 485, 89, 15, 151, 99, 530, 31, 29718, 63, 8, 8, 65, 48842, 33, 7775, 251, 3480, 17, 1068, 43, 26, 57799, 351, 53, 80, 9, 9, 82, 55, 378, 10405, 28, 197, 500, 19, 1574, 1151, 12151, 2143295, 39, 49, 5604, 99, 10, 10, 101, 227528 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal a(n) and b(n) numbers for the +1 option are 2*a(n)^2+1 and 2*a(n)*b(n), respectively (see Perron I, pp. 94,95).
If d(n)=A000037(n)= k^2+1, k=1,2,.., then the a^2 - d(n)*b^2 = -1 Pell equation has the minimal solution a(n)=k and b(n)=1. If d(n)=A000037(n)= k^2-1, k=2,3,..., then the a^2 - d(n)*b^2 = +1 Pell equation has the minimal solution a=k and b=1.
The general integer solutions (up to signs) of Pell equation a^2 - d(n)*b^2 = +1 with d(n)=A000037(n), but not from A003654, are a(n,p)= T(p+1,a(n)) and b(n,p)= b(n)*S(p,2*a(n)), p=0,1,... If d(n)=A000037(n) is also from A003654 then these solutions are a(n,p)= T(p+1,2*a(n)^2+1) and b(n,p)= 2*a(n)*b(n)*S(p,2*(2*a(n)^2+1)), p=0,1,... Here T(n,x), resp. S(n,x) := U(n,x/2), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
The general integer solutions (up to signs) of the Pell equation a^2 - d(n)*b^2 = -1 with d(n)=A000037(n)= A003654(k), for some k>=1, are a(n,p) = a(n)*(S(n,2*(2*a(n)^2)+1) + S(n-1,2*(2*a(n)^2)+1)) and b(n,p) = b(n)*(S(n,2*(2*a(n)^2)+1) - S(n-1,2*(2*a(n)^2)+1)) with the S(n,x) := U(n,x/2) Chebyshev polynomials. S(-1,x) := 0.
If the trivial solution x=1, y=0 is included, the sequence becomes A006702. - T. D. Noe, May 17 2007
REFERENCES
T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).
LINKS
FORMULA
a(n)=sqrt(A000037(n)*A077233(n)^2 + (-1)^(c(n))) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0.
EXAMPLE
d=10=A000037(7)=A003654(3), therefore a(7)^2=10*b(7)^2 -1, i.e. 3^2=10*1^2 -1 and 2*a(7)^2+1=19 and 2*a(7)*b(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.
d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the a^2 - d*b^2 = -1 Pell equation and a(8)=10 and b(8)=A077233(8)=3 satisfy 10^2 - 11*3^2 = +1.
10=d(7)=A000037(7)=A003654(3)=3^2+1 hence a(7)=3 and b(7)=1 are the smallest numbers satisfying a^2-10*b^2=-1.
8=d(6)=A000037(6)=3^2-1 (not in A003654) hence a(6)=3 and b(6)=1 are the smallest numbers satisfying a^2-8*b^2=+1.
MATHEMATICA
nmax = 500;
nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)
nonSquare[n_] := n + Round[Sqrt[n]];
a[n_] := a[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 10 2021 *)
CROSSREFS
Sequence in context: A265819 A254746 A011021 * A193891 A193906 A224791
KEYWORD
nonn,nice
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:35 EDT 2024. Contains 371964 sequences. (Running on oeis4.)