|
|
A030706
|
|
Decimal expansion of 11^n contains no zeros (probably finite).
|
|
26
|
|
|
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
See A195946 for the actual powers 11^n. - M. F. Hasler, Dec 17 2014
It appears that 41 is also the largest integer n such that 11^n is not pandigital, cf. A272269. - M. F. Hasler, May 18 2017
|
|
LINKS
|
Table of n, a(n) for n=1..16.
M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
Eric Weisstein's World of Mathematics, Zero
|
|
MATHEMATICA
|
Select[Range[0, 41], DigitCount[11^#, 10, 0]==0&] (* Harvey P. Dale, Dec 31 2020 *)
|
|
PROG
|
(PARI) for(n=0, 99, vecmin(digits(11^n))&&print1(n", ")) \\ M. F. Hasler, Mar 08 2014
|
|
CROSSREFS
|
For other zeroless powers x^n, see A238938, A238939, A238940, A195948, A238936, A195908 (x=7), A245852, A240945 (k=9), A195946 (x=11), A245853 (x=12), A195945 (x=13); A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706 (this), A195944.
For other related sequences, see A052382, A027870, A102483, A103663.
Sequence in context: A330104 A330120 A239015 * A285986 A101883 A236207
Adjacent sequences: A030703 A030704 A030705 * A030707 A030708 A030709
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
Offset corrected and initial term 0 added by M. F. Hasler, Sep 25 2011
Further edits by M. F. Hasler, Dec 17 2014
|
|
STATUS
|
approved
|
|
|
|