%I #18 Dec 31 2020 13:25:28
%S 0,1,2,3,4,6,7,8,9,12,13,14,15,16,18,41
%N Decimal expansion of 11^n contains no zeros (probably finite).
%C See A195946 for the actual powers 11^n. - _M. F. Hasler_, Dec 17 2014
%C It appears that 41 is also the largest integer n such that 11^n is not pandigital, cf. A272269. - _M. F. Hasler_, May 18 2017
%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Zero.html">Zero</a>
%t Select[Range[0,41],DigitCount[11^#,10,0]==0&] (* _Harvey P. Dale_, Dec 31 2020 *)
%o (PARI) for(n=0,99,vecmin(digits(11^n))&&print1(n",")) \\ _M. F. Hasler_, Mar 08 2014
%Y For other zeroless powers x^n, see A238938, A238939, A238940, A195948, A238936, A195908 (x=7), A245852, A240945 (k=9), A195946 (x=11), A245853 (x=12), A195945 (x=13); A195942, A195943, A103662.
%Y For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706 (this), A195944.
%Y For other related sequences, see A052382, A027870, A102483, A103663.
%K nonn,base
%O 1,3
%A _Eric W. Weisstein_
%E Offset corrected and initial term 0 added by _M. F. Hasler_, Sep 25 2011
%E Further edits by _M. F. Hasler_, Dec 17 2014