login
A029030
Expansion of 1/((1-x)(1-x^2)(1-x^10)(1-x^11)).
1
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 54, 57, 63, 67, 73, 77, 83, 87, 93, 97, 104, 109, 117, 123, 132, 138, 147, 153, 162, 168, 178, 185, 196, 204
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n into parts 1, 2, 10, and 11. - Joerg Arndt, May 13 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,0,0,0,0,1,0,-2,0,1,0,0,0,0,0,0,-1,1,1,-1).
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-10) - 2*a(n-12) + a(n-14) - a(n-21) + a(n-22) + a(n-23) - a(n-24). - Matthew House, May 07 2017
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^10)(1-x^11)), {x, 0, 60}], x] (* Harvey P. Dale, Mar 13 2013 *)
CROSSREFS
Sequence in context: A122522 A227614 A236473 * A008719 A079685 A112409
KEYWORD
nonn
STATUS
approved