login
A029032
Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^5)).
1
1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 27, 31, 35, 40, 45, 51, 57, 63, 70, 78, 86, 94, 103, 113, 123, 134, 145, 157, 170, 183, 197, 212, 227, 243, 260, 278, 296, 315, 335, 356, 378, 400, 423, 448, 473
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1,3,4 and 5. - David Neil McGrath, Sep 13 2014
LINKS
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=4, a(6)=5, a(7)=6, a(8)=8, a(9)=10, a(10)=12, a(11)=14, a(12)=17, a(n)=a(n-1)+a(n-3)-a(n-6)- a(n-7)+ a(n-10)+a(n-12)-a (n-13). - Harvey P. Dale, Jan 04 2012
a(n)-a(n-1) = A008680(n). - R. J. Mathar, Jun 23 2021
a(n)-a(n-3) = A025772(n). - R. J. Mathar, Jun 23 2021
a(n)-a(n-4) = A008672(n). - R. J. Mathar, Jun 23 2021
a(n)-a(n-5) = A025767(n). - R. J. Mathar, Jun 23 2021
MAPLE
M := Matrix(13, (i, j)-> if (i=j-1) or (j=1 and member(i, [1, 3, 10, 12])) then 1 elif j=1 and member(i, [6, 7, 13]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..49); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17}, 50] (* Harvey P. Dale, Jan 04 2012 *)
CROSSREFS
Sequence in context: A237118 A112402 A056864 * A218906 A059809 A327634
KEYWORD
nonn,easy
AUTHOR
STATUS
approved