This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236473 Number of partitions into multiplicatively perfect numbers, cf. A007422. 5
 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 8, 10, 10, 12, 12, 15, 17, 21, 22, 26, 27, 32, 35, 41, 44, 52, 55, 63, 68, 78, 85, 98, 105, 119, 128, 144, 156, 177, 191, 214, 231, 257, 277, 310, 335, 372, 402, 444, 478, 529, 571, 630, 681, 747, 804, 883, 951 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 EXAMPLE a(10) = #{10, 8+1+1, 6+1+1+1+1, 10x1} = 4; a(11) = #{10+1, 8+1+1+1, 6+1+1+1+1+1, 11x1} = 4; a(12) = #{10+1+1, 8+1+1+1+1, 6+6, 6+6x1, 12x1} = 5; a(13) = #{10+1+1+1, 8+1+1+1+1+1, 6+6+1, 6+7x1, 13x1} = 5; a(14) = #{14, 10+1+1+1+1, 8+6, 8+6x1, 6+6+1+1, 6+8x1, 14x1} = 7; a(15) = #{15, 14+1, 10+1+1+1+1+1, 8+6+1, 8+7x1, 6+6+1+1+1, 6+9x1, 15x1} = 8; a(16) = #{15+1, 14+1+1, 10+6, 10+6x1, 8+8, 8+6+1+1, 8+8x1, 6+6+1+1+1+1, 6+10x1, 16x1} = 10. MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*(add(       `if`(tau(d)=4, d, 0), d=divisors(j))+1), j=1..n)/n)     end: seq(a(n), n=0..100);  # Alois P. Heinz, Mar 23 2017 MATHEMATICA a[n_] := a[n] = If[n == 0, 1, Sum[a[n-j]*(Sum[If[DivisorSigma[0, d] == 4, d, 0], {d, Divisors[j]}] + 1), {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz *) PROG (Haskell) a236473 = p a007422_list where    p _          0 = 1    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m CROSSREFS Sequence in context: A027191 A122522 A227614 * A029030 A008719 A079685 Adjacent sequences:  A236470 A236471 A236472 * A236474 A236475 A236476 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jan 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 21:53 EST 2019. Contains 329909 sequences. (Running on oeis4.)