OFFSET
0,2
COMMENTS
a(n) (for n >= 1) is also the Wiener index of the windmill graph D(5, n). The windmill graph D(m, n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e. a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. The Wiener index of D(m, n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(3, n), D(4, n), and D(6, n) see A033991, A152743, and A180577, respectively. - Emeric Deutsch, Sep 21 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Decagonal Number.
Eric Weisstein's World of Mathematics, Windmill Graph. - Emeric Deutsch, Sep 21 2010
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*n*(8*n - 3). - Omar E. Pol, Aug 19 2011
G.f.: -2*x*(11*x+5)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=1} 1/a(n) = (8*log(2) - (sqrt(2)-1)*Pi - 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 2*x*(5 + 8*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
CoefficientList[Series[-2 x (11 x + 5)/(x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 10, 52}, 40] (* Harvey P. Dale, Dec 10 2014 *)
Table[16n^2 - 6n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
PROG
(Magma) [2*n*(8*n - 3): n in [0..60]]; // Vincenzo Librandi, Oct 18 2013
(PARI) a(n)=2*n*(8*n-3) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved