OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Decagonal Number.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = (2*n+1)*(8*n+1). - N. J. A. Sloane
G.f.: -(7*x^2+24*x+1)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=0} 1/a(n) = (4*log(2) + (sqrt(2)+1)*Pi + 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(1 + 26*x + 16*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
MATHEMATICA
CoefficientList[Series[-(7 x^2 + 24 x + 1)/(x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Select[PolygonalNumber[10, Range[100]], OddQ] (* or *) LinearRecurrence[{3, -3, 1}, {1, 27, 85}, 50] (* Harvey P. Dale, May 03 2023 *)
PROG
(Magma) [(2*n+1)*(8*n+1): n in [0..60]]; // Vincenzo Librandi, Oct 18 2013
(PARI) a(n)=(2*n+1)*(8*n+1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved