login
A028953
Theta series of quadratic form (or lattice) with Gram matrix [ 3, 1; 1, 4 ].
1
1, 0, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 2, 6, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to 3*x^2 + 2*x*y + 4*y^2, discriminant -44. - Ray Chandler, Jul 12 2014
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q) * phi(q^11) - 2*q * f(-q^2) * f(-q^22) = phi(q^3) * phi(q^33) + 2*q^4 * chi(q) * psi(-q^3) * chi(q^11) * psi(-q^33) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos and Alex Berkovich, Jun 24 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (44 t)) = 44^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 24 2011
G.f.: Sum_{n, m in Z} x ^ (3*n*n + 2*n*m + 4*m*m).
a(4*n + 2) = a(11*n + 2) = a(11*n + 6) = a(11*n + 7) = a(11*n + 8) = a(11*n + 10) = 0. - Michael Somos, Feb 23 2012
EXAMPLE
G.f. = 1 + 2*q^3 + 2*q^4 + 2*q^5 + 2*q^9 + 4*q^12 + 2*q^15 + 2*q^16 + 4*q^20 + 2*q^23 + 2*q^25 + 2*q^27 + 2*q^31 + 2*q^33 + 6*q^36 + 2*q^37 + 2*q^44 + 4*q^45 + ...
MATHEMATICA
r[n_] := Reduce[{x, y}.{{3, 1}, {1, 4}}.{x, y} == n, {x, y}, Integers]; Table[rn = r[n]; Which[rn === False, 0, Head[rn] === Or, Length[rn], Head[rn] === And, 1], {n, 0, 105}] (* Jean-François Alcover, Nov 05 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] - 2 q QPochhammer[ q^2] QPochhammer[ q^22], {q, 0, n}]; (* Michael Somos, Feb 09 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep([3, 1; 1, 4], n)[n] * 2)}; /* Michael Somos, Jun 24 2011 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=1, sqrtint( n), 2 * x^k^2, 1 + A) * sum( k=1, sqrtint( n\11), 2 * x^(11*k^2), 1 + A) - 2 * x * eta(x^2 + A) * eta(x^22 + A), n))}; /* Michael Somos, Jun 24 2011 */
(Magma) A := Basis( ModularForms( Gamma1(44), 1), 87); A[1] + 2*A[4] + 2*A[5] + 2*A[6] + 2*A[10] + 4*A[13] + 2*A[16] + 2*A[17] + 4*A[21] + 2*A[24]; /* Michael Somos, Feb 09 2017 */
CROSSREFS
Sequence in context: A214458 A133873 A163326 * A348648 A037865 A039969
KEYWORD
nonn
AUTHOR
STATUS
approved