

A214458


Let S_3(n) denote difference between multiples of 3 in interval [0,n) with even and odd binary digit sums. Then a(n)=(1)^A000120(n)*(S_3(n)3*S_3(floor(n/4))).


2



0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,14


COMMENTS

In 1969, D. J. Newman (see the reference) proved L. Moser's conjecture that difference between numbers of multiples of 3 with even and odd binary digit sums in interval [0,x] is always positive. This fact is known as MoserNewman phenomenon.
Theorem: The sequence is periodic with period of length 24.


LINKS

Table of n, a(n) for n=0..76.
J. Coquet, A summation formula related to the binary digits, Inventiones Mathematicae 73 (1983), pp. 107115.
D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719721.
V. Shevelev, Two algorithms for evaluation of the Newman digit sum, and a new proof of Coquet's theorem, arXiv:0709.0885 [math.NT], 20072012.


FORMULA

Recursion for evaluation S_3(n): S_3(n)=3*S_3(floor(n/4))+(1)^A000120(n)*a(n). As a corollary, we have S_3(n)3*S_3(n/4)<=2.


CROSSREFS

Cf. A091042, A212500.
Sequence in context: A237452 A132784 A180834 * A133873 A163326 A028953
Adjacent sequences: A214455 A214456 A214457 * A214459 A214460 A214461


KEYWORD

sign,base


AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Jul 18 2012


STATUS

approved



