This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027611 Denominator of n * n-th harmonic number. 18
 1, 1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 4084080, 3879876, 739024, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This is very similar to A128438, which is a different sequence. They differ at n=6 (and nowhere else?). - N. J. A. Sloane, Nov 21 2008 Denominator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n. Denominator of sum(k=1,n,frac(n/k)) where frac(x/y) denotes the fractional part of x/y. - Benoit Cloitre, Oct 03 2002 Denominator of Sum{n/d : 1 0}. Numerator = A079076. - Reinhard Zumkeller, Dec 21 2002 a(n) is odd iff n is a power of 2. - Benoit Cloitre, Oct 03 2002 a(n) equals the denominator of the (closed form) evaluation of Sum[HarmonicNumber[k+n-1],{k,1,r}] (see Mathematica code below). - John M. Campbell, May 28 2011 Indices where a(n) differs from A128438 are terms of A074791. - Gary Detlefs, Sep 03 2011 a(n) = A213999(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Complete Set FORMULA Denominators of coefficients in expansion of -log(1-x)/(1-x)^2. Denominators of (n+1)*(harmonic(n+1)-1). Denominators of (n+1)*(Psi(n+2)+gamma-1). - Vladeta Jovovic, Sep 02 2002 a(n) = Numerator(h(n)/h(n-1))-Denominator(h(n)/h(n-1)), n>1, where h(n) is the n-th harmonic number. - Gary Detlefs, Sep 03 2011 MATHEMATICA f[n_]:=Denominator[n*HarmonicNumber[n]]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *) Table[Denominator[Sum[HarmonicNumber[k+n-1], {k, 1, r}]], {n, 2, 40}] (* John M. Campbell, May 28 2011 *) PROG (Haskell) import Data.Ratio ((%), denominator) a027611 n = denominator \$ sum \$ map (n %) [1..n] -- Reinhard Zumkeller, Jul 03 2012 (MAGMA) [Denominator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014 (PARI) a(n) = denominator(n*sum(k=1, n, 1/k)); \\ Michel Marcus, Feb 15 2015 CROSSREFS Harmonic numbers = A001008/A002805. Cf. A001705, A006675, A027612, A049820, A024816. Cf. A128438. Sequence in context: A081526 A075711 A079077 * A303221 A168059 A068550 Adjacent sequences:  A027608 A027609 A027610 * A027612 A027613 A027614 KEYWORD nonn,easy,frac AUTHOR Glen Burch (gburch(AT)erols.com) EXTENSIONS Entry revised by N. J. A. Sloane following a suggestion of Eric W. Weisstein, Jul 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)