login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027611 Denominator of n * n-th harmonic number. 18
1, 1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 4084080, 3879876, 739024, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This is very similar to A128438, which is a different sequence. They differ at n=6 (and nowhere else?). - N. J. A. Sloane, Nov 21 2008

Denominator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.

Denominator of sum(k=1,n,frac(n/k)) where frac(x/y) denotes the fractional part of x/y. - Benoit Cloitre, Oct 03 2002

Denominator of Sum{n/d : 1<d<n and n mod d > 0}. Numerator = A079076. - Reinhard Zumkeller, Dec 21 2002

a(n) is odd iff n is a power of 2. - Benoit Cloitre, Oct 03 2002

a(n) equals the denominator of the (closed form) evaluation of Sum[HarmonicNumber[k+n-1],{k,1,r}] (see Mathematica code below). - John M. Campbell, May 28 2011

Indices where a(n) differs from A128438 are terms of A074791. - Gary Detlefs, Sep 03 2011

a(n) = A213999(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Complete Set

FORMULA

Denominators of coefficients in expansion of -log(1-x)/(1-x)^2. Denominators of (n+1)*(harmonic(n+1)-1). Denominators of (n+1)*(Psi(n+2)+gamma-1). - Vladeta Jovovic, Sep 02 2002

a(n) = Numerator(h(n)/h(n-1))-Denominator(h(n)/h(n-1)), n>1, where h(n) is the n-th harmonic number. - Gary Detlefs, Sep 03 2011

MATHEMATICA

f[n_]:=Denominator[n*HarmonicNumber[n]]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)

Table[Denominator[Sum[HarmonicNumber[k+n-1], {k, 1, r}]], {n, 2, 40}] (* John M. Campbell, May 28 2011 *)

PROG

(Haskell)

import Data.Ratio ((%), denominator)

a027611 n = denominator $ sum $ map (n %) [1..n]

-- Reinhard Zumkeller, Jul 03 2012

(MAGMA) [Denominator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014

(PARI) a(n) = denominator(n*sum(k=1, n, 1/k)); \\ Michel Marcus, Feb 15 2015

CROSSREFS

Harmonic numbers = A001008/A002805.

Cf. A001705, A006675, A027612, A049820, A024816.

Cf. A128438.

Sequence in context: A081526 A075711 A079077 * A303221 A168059 A068550

Adjacent sequences:  A027608 A027609 A027610 * A027612 A027613 A027614

KEYWORD

nonn,easy,frac

AUTHOR

Glen Burch (gburch(AT)erols.com)

EXTENSIONS

Entry revised by N. J. A. Sloane following a suggestion of Eric W. Weisstein, Jul 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)