OFFSET
0,8
COMMENTS
The n-th row has 2n+1 terms.
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..1000, replaces Zumkeller's file for new offset.
EXAMPLE
The array begins:
1;
1, 1, 1;
1, 1, 1, 3, 1;
1, 1, 1, 3, 5, 5, 1;
1, 1, 1, 3, 5, 9, 13, 11, 1;
MAPLE
T:= proc(n, k) option remember;
if k<3 or k=2*n then 1
else T(n-1, k-3) + T(n-1, k-2) + T(n-1, k-1)
fi
end proc:
seq(seq(T(n, k), k=0..2*n), n=0..10); # G. C. Greubel, Nov 04 2019
MATHEMATICA
T[n_, 0] := 1; T[n_, 1] := 1; T[n_, k_]/; (k==2n) := 1 /; n >=1; T[n_, 2] := 1; T[n_, k_]/; (k <= 2n-1) := T[n, k]=T[n-1, k-3]+T[n-1, k-2]+T[n-1, k-1]
PROG
(PARI) {T(n, k) = if( k<0 || k>2*n, 0, if( k<3 || k==2*n, 1, T(n-1, k-3) + T(n-1, k-2) + T(n-1, k-1)))}; /* Michael Somos, Feb 14 2004 */
(Haskell)
a027023 n k = a027023_tabf !! (n-1) !! (k-1)
a027023_row n = a027023_tabf !! (n-1)
a027023_tabf = [1] : iterate f [1, 1, 1] where
f row = 1 : 1 : 1 :
zipWith3 (((+) .) . (+)) (drop 2 row) (tail row) row ++ [1]
-- Reinhard Zumkeller, Jul 06 2014
(Sage)
def T(n, k):
if (k<3 or k==2*n): return 1
else: return T(n-1, k-3) + T(n-1, k-2) + T(n-1, k-1)
[[T(n, k) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Nov 04 2019
(GAP)
T:= function(n, k)
if k<3 or k=2*n then return 1;
else return T(n-1, k-3) + T(n-1, k-2) + T(n-1, k-1);
fi;
end;
Flat(List([0..10], n-> List([0..2*n], k-> T(n, k) ))); # G. C. Greubel, Nov 04 2019
CROSSREFS
Columns are essentially constant with values from A000213 (tribonacci numbers).
Diagonals T(n, 2n-c) are A027050 (c=1), A027051 (c=2), A027027 (c=3), A027028 (c=4), A027029 (c=5), A027030 (c=6), A027031 (c=7), A027032 (c=8), A027033 (c=9), A027034 (c=10).
Many other sequences are derived from this one: see A027035 A027036 A027037 A027038 A027039 A027040 A027041 A027042 A027043 A027044 A027045 and A027046 A027047 A027048 A027049.
Cf. A027907.
KEYWORD
nonn,tabf,nice
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane and Ralf Stephan, Feb 13 2004
Offset corrected to 0. - R. J. Mathar, Jun 24 2020
STATUS
approved