login
A027041
a(n) = Sum_{k=0..n} T(n,k) * T(n,2n-k), with T given by A027023.
2
1, 2, 5, 20, 77, 306, 1209, 4656, 17713, 66618, 248025, 916020, 3359789, 12250026, 44435997, 160466304, 577185745, 2068826290, 7392167585, 26338879556, 93609302941, 331924381218, 1174482354493, 4147807582672, 14622567051025, 51466158436298, 180869949252245, 634753692067716
OFFSET
0,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<3 or k=2*n then 1
else add(T(n-1, k-j), j=1..3)
fi
end:
seq(add(T(n, k)*T(n, 2*n-k), k=0..n), n=0..30); # G. C. Greubel, Nov 04 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[Sum[T[n, k]*T[n, 2*n-k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 04 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<3 or k==2*n): return 1
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k)*T(n, 2*n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 04 2019
CROSSREFS
Sequence in context: A189734 A221678 A297350 * A355866 A186767 A009737
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 22 2019
STATUS
approved