login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062278 a(n) = floor(3^n / n^3). 3
3, 1, 1, 1, 1, 3, 6, 12, 27, 59, 133, 307, 725, 1743, 4251, 10509, 26285, 66430, 169450, 435848, 1129505, 2947131, 7737583, 20430377, 54226471, 144621405, 387420489, 1042127936, 2813988985, 7625597484, 20733556989, 56549688380 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

3 is the only integer value of k for which floor(n^k / k^n) is always positive. For positive real x and k, the only value of k for which x^k is always greater than or equal to k^x is e = 2.71828...

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..200

EXAMPLE

a(2) = floor(3^2 / 2^3) = floor(9/8) = 1.

MAPLE

seq(floor(3^n/n^3), n=1..35); # Muniru A Asiru, Jul 01 2018

MATHEMATICA

Table[Floor[3^n/n^3], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)

PROG

(PARI) { default(realprecision, 50); for (n=1, 200, write("b062278.txt", n, " ", floor(3^n / n^3)) ) } \\ Harry J. Smith, Aug 03 2009

(GAP) List([1..35], n->Int(3^n/n^3)); # Muniru A Asiru, Jul 01 2018

CROSSREFS

Cf. A000244, A000578, A024026, A060505.

Sequence in context: A124389 A027023 A052371 * A260638 A268523 A195768

Adjacent sequences:  A062275 A062276 A062277 * A062279 A062280 A062281

KEYWORD

nonn

AUTHOR

Henry Bottomley, Jul 02 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 06:30 EDT 2019. Contains 322237 sequences. (Running on oeis4.)