OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
G.f.: 6/(5+(1-36*x)^(1/6)).
Recurrence: for n>5,
a(n)=((n-1)*(n-2)*(n-3)*(n-4)*(78119*n-273420)*a(n-1)-90*(n-2)*(n-3)*(n-4)*(62494*n^2-499959*n+1014685)*a(n-2)+180*(n-3)*(n-4)*(1124856*n^3-15185808*n^2+68852647*n-104826890)*a(n-3)-3240*(n-4)*(1124784*n^4-22496184*n^3+169193274*n^2-567111339*n+714764687)*a(n-4)+5184*(5060556*n^5-139170960*n^4+1530231885*n^3-8408803050*n^2+23092951859*n-25356134300)*a(n-5)+93312*(2*n-11)*(3*n-16)*(3*n-17)*(6*n-31)*(6*n-35)*a(n-6))/(434*n*(n-1)*(n-2)*(n-3)*(n-4)). - Tani Akinari, Sep 15 2015
a(n) ~ 36^n / (25 * Gamma(5/6) * n^(7/6)) * (1 - 2^(1/3)*sqrt(3)*Gamma(2/3) / (5*sqrt(Pi)*n^(1/6))). - Vaclav Kotesovec, Sep 22 2015
a(n) = (-1)^(n+1) * 6^(2*n+1) * Sum_{k>=0} (-1/5)^(k+1) * binomial(k/6,n). - Seiichi Manyama, Aug 04 2024
MATHEMATICA
Table[SeriesCoefficient[6/(5 + (1 - 36*x)^(1/6)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
PROG
(Maxima) a[0]:1$ a[1]:1$ a[2]:16$ a[3]:361$ a[4]:9346$ a[5]:260710$
a[n]:=((n-1)*(n-2)*(n-3)*(n-4)*(78119*n-273420)*a[n-1]-90*(n-2)*(n-3)*(n-4)*(62494*n^2-499959*n+1014685)*a[n-2]+180*(n-3)*(n-4)*(1124856*n^3-15185808*n^2+68852647*n-104826890)*a[n-3]-3240*(n-4)*(1124784*n^4-22496184*n^3+169193274*n^2-567111339*n+714764687)*a[n-4]+5184*(5060556*n^5-139170960*n^4+1530231885*n^3-8408803050*n^2+23092951859*n-25356134300)*a[n-5]+93312*(2*n-11)*(3*n-16)*(3*n-17)*(6*n-31)*(6*n-35)*a[n-6])/(434*n*(n-1)*(n-2)*(n-3)*(n-4));
makelist(a[n], n, 0, 500); /* Tani Akinari, Sep 15 2015 */
(PARI) default(seriesprecision, 40); Vec(6/(5+(1-36*x)^(1/6)) + O(x^30)) \\ Michel Marcus, Sep 15 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved