OFFSET
0,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
FORMULA
G.f.: Product_{k>=3} (1+x^k).
a(n) = A096749(n+2). - R. J. Mathar, Jul 31 2008
G.f.: sum(n>=0, x^(n*(n+5)/2) / prod(k=1..n, 1-x^k) ); special case of g.f. for partitions into distinct parts >= L, sum(n>=0, x^(n*(n+2*L-1)/2) / prod(k=1..n, 1-x^k) ). - Joerg Arndt, Mar 24 2011
G.f.: sum(n>=2, x^(n*(n+1)/2-3) / prod(k=1..n-2, 1-x^k) ), a special case of the g.f. for partitions into distinct parts >= L, sum(n>=L-1, x^(n*(n+1)/2-L*(L-1)/2) / prod(k=1..n-(L-1), 1-x^k) ). - Joerg Arndt, Mar 27 2011
a(n) + a(n+1) + a(n+2) + a(n+3) = A000009(n+3). - Vaclav Kotesovec, Oct 22 2015
a(n) ~ 1/4 * A000009(n). - Vaclav Kotesovec, Oct 22 2015
MAPLE
with(combstruct) ; sys := {L = PowerSet(Sequence(Z, card>2)) }; seq( count([L, sys], size=i), i=0..56 ); # Zerinvary Lajos, Mar 08 2007
A025148 := proc(n) mul(1+x^k, k=3..n+1) ; expand(%) ; coeftayl(%, x=0, n) ; end proc: # R. J. Mathar, Mar 28 2011
# third Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-2)*(i+3)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 3 &]; Table[d[n], {n, 16}] (* strict partitions, parts >= 3 *)
Table[Length[d[n]], {n, 40}] (* A025148 for n >= 1 *)
(* Clark Kimberling, Mar 07 2014 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[(i-2)*(i+3)/2<n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved