This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025151 Number of partitions of n into distinct parts >= 6. 3
 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 20, 23, 26, 29, 34, 38, 43, 49, 55, 62, 70, 79, 88, 100, 111, 125, 140, 157, 174, 196, 217, 243, 270, 301, 333, 372, 411, 457, 506, 561, 619, 687, 757, 837, 924, 1019, 1122, 1238, 1361, 1498 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A026826(n+5). - R. J. Mathar, Jul 31 2008 G.f.: product_{j=6..infinity} (1+x^j). - R. J. Mathar, Jul 31 2008 MAPLE b:= proc(n, i) option remember;       `if`(n=0, 1, `if`((i-5)*(i+6)/2 b(n\$2): seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014 MATHEMATICA d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 6 &]; Table[d[n], {n, 16}] (* strict partitions, parts >= 6 *) Table[Length[d[n]], {n, 40}] (* A025151 for n >= 1 *) (* Clark Kimberling, Mar 07 2014 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i - 5)(i + 6)/2 < n, 0, Sum[b[n - i j, i - 1], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *) CROSSREFS Cf. A025147. Sequence in context: A237979 A264591 A026826 * A026801 A185328 A210718 Adjacent sequences:  A025148 A025149 A025150 * A025152 A025153 A025154 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.