login
A024844
a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.
3
7, 28, 61, 106, 163, 232, 313, 406, 511, 647, 780, 946, 1105, 1301, 1486, 1712, 1923, 2179, 2416, 2702, 2965, 3281, 3570, 3916, 4231, 4607, 4999, 5356, 5778, 6216, 6613, 7081, 7565, 8002, 8516, 9046, 9523, 10083, 10659, 11176, 11782, 12404, 12961, 13613, 14281, 14878
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
From Jianing Song, Aug 31 2022: (Start)
Smallest m such that ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = 5 for 1 <= j <= n-1.
Obviously we have a(n) > 3/(1/(2*n-3) - 1/(2*n-1)) => a(n) >= 6*n^2 - 12*n + 5. On the other hand, a(n) <= 4/(1/(2*n-3) - 1/(2*n-1)) + 1 = 2*(2*n-1)*(2*n-3) + 1: if m >= 2*(2*n-1)*(2*n-3) + 1, then m/(2*j-1) - m/(2*j+1) > 4 => ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = ceiling(m/(2*j-1)-floor(m/(2*j+1))) >= ceiling(m/(2*j-1) - m/(2*j+1)) >= 5 for 1 <= j <= n-1. (End)
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
t[[4]] (* A024844 *)
(* Peter J. C. Moses, Aug 06 2012 *)
PROG
(PARI) a(n) = for(m=6*n^2-12*n+5, 8*n^2-16*n+7, forstep(j=n-1, 1, -1, if(-((-m)\(2*j-1)) - m\(2*j+1) < 5, break(), if(j==1, return(m))))) \\ Jianing Song, Aug 31 2022
CROSSREFS
Sequence in context: A118120 A078307 A045551 * A230285 A033582 A176362
KEYWORD
nonn
STATUS
approved