login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001000 a(n) = least m such that if a/b < c/d where a,b,c,d are integers in [0,n], then a/b < k/m < c/d for some integer k. 37
2, 3, 5, 7, 13, 17, 26, 31, 43, 57, 65, 82, 101, 111, 133, 157, 183, 197, 226, 257, 290, 307, 343, 381, 421, 463, 485, 530, 577, 626, 677, 703, 757, 813, 871, 931, 993, 1025, 1090, 1157, 1226, 1297, 1370, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1937, 2026, 2117 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It suffices for (a/b, c/d) to range through the consecutive pairs of Farey fractions of order n.

This is the same sequence (apart from the initial term) as A071111. The identity of these two sequences was first proved by Rustem Aidagulov and a detailed version of the proof can be found in the Alekseyev link below.

For sets of real numbers S and T, let S be a divider of T if some element of S lies strictly between any two distinct elements of T. Let Fence(n) = {a/n : a in Z}, Recip(n) = {1/b : 1 <= b <= n} Farey(n) = {a/b : a in Z, 1 <= b <= n}. Then a(n) is the smallest k such that Fence(k) is a divider of Recip(n) and also the smallest k such that Fence(k) is a divider of Farey(n), as shown by S. Rustem Aidagulov. - David W. Wilson, Aug 30 2007

Suppose that S is a set of 2 or more real numbers.  The least m such that for every r and s in S there is an integer k such that r < k/m < s is the first separator of S.  The least m such that for every r and s in S there exists an integer k such that r < k/m < (k+1)/m < s is the second separator of S, and so on.

...

For example, A001000 gives first separators for the sets S(n) = {0,1/2,1/3,...,1/n}.  In the following guide, the set S(n) consists of numbers given by the shown formula for h = 1, 2, ..., n; F = A000045 (Fibonacci numbers), and r = (1+sqrt(5))/2 (golden ratio).

...

S(n) ................... 1st separators

Farey fractions ........ A001000

1/h .................... A071111

1/(2*h-1) .............. A024819

1/(2*h) ................ A024820

1/sqrt(h) .............. A024821

1/(3*h-2) .............. A024822

1/(3*h-1) .............. A024823

1/(3*h) ................ A024824

1/(4*h) ................ A024825

1/C(n+1,2) ............. A024826

1/h^2 .................. A024827

h/(1+h^2) .............. A024828

F(2*h-1)/F(2*h)......... A024829

F(2*h)/F(2*h+1) ........ A024830

F(2*h+1)/F(2*h+2)....... A024831

pi/2 - arctan(h) ....... A024832

|F(h+1)-r*F(h)| ........ A024849

fr. parts, h*sqrt(2) ... A214921

fr. parts, h*r ......... A214964

fr. parts, h*e ......... A214965

...

S(n) ............. 2nd separators

1/h .............. A024833

1/(2*h-1) ........ A024834

1/(2*h) .......... A024835

1/(3*h-2) ........ A024836

1/(3*h-1) ........ A024837

1/(3*h) .......... A024838

1/(4*h) .......... A024839

...

S(n) ............. 3rd separators

1/h .............. A024840

1/(2*h-1) ........ A024841

1/(2*h) .......... A024842

...

S(n) ............. 4th separators

1/h .............. A024843

1/(2*h-1) ........ A024844

1/(2*h) .......... A024845

...

S(n) ............. 5th separators

1/h .............. A024846

1/(2*h-1) ........ A024847

- Clark Kimberling, Aug 07 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Max Alekseyev, Proof that A001000 and A071111 are essentially the same sequence

FORMULA

For n >= 2, a(n) = (n-[r])(n-[r+1/2])+1, where r = sqrt(4n-7), [x] = greatest integer <= x. - David W. Wilson, Aug 30 2007

EXAMPLE

The Farey fractions of order 4, 0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1, are separated by the fractions k/7: 0/1 < 1/7 <1/4 < 2/7 < 1/3 < 3/7 < 1/2 < 4/7 < 2/3 <5/7 < 3/4 <6/7 < 1 and 7 is the least m for which at least one k/m lies strictly between each pair of Farey fractions.

MATHEMATICA

(* The following program generates a northwest corner of an array in which row k shows the least k-th separator of the set {1/h : h = 1, 2, ..., n}. *)

leastSeparatorS[seq_, s_] := Module[{n = 1},

Table[While[Or @@ (n #[[1]] <=

s + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@

Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];

TableForm[Map[leastSeparatorS[1/Range[15], #] &, Range[10]]]

(* Peter J. C. Moses, Aug 07 2012 *)

CROSSREFS

Cf. A071111.

Sequence in context: A069866 A125772 A233282 * A094947 A231474 A092621

Adjacent sequences:  A000997 A000998 A000999 * A001001 A001002 A001003

KEYWORD

nonn,nice

AUTHOR

Clark Kimberling

EXTENSIONS

Incompleteness of old definition pointed out by Christopher Carl Heckman, and revised definition supplied by Clark Kimberling, Feb 18 2004

Definition of separator, guide to related sequences, and Mathematica program added by Clark Kimberling, Aug 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 11:02 EST 2018. Contains 299330 sequences. (Running on oeis4.)