login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023554
Convolution of natural numbers >= 3 and (Fib(2), Fib(3), Fib(4), ...).
2
3, 10, 22, 43, 78, 136, 231, 386, 638, 1047, 1710, 2784, 4523, 7338, 11894, 19267, 31198, 50504, 81743, 132290, 214078, 346415, 560542, 907008, 1467603, 2374666, 3842326, 6217051, 10059438, 16276552, 26336055, 42612674, 68948798, 111561543, 180510414
OFFSET
1,1
COMMENTS
a(n) is the sum of row n in the triangle T(n,k) defined by: T(n,1) = T(n,n) = 2*n+1 for n>=1 and T(n,k) = 3*T(n-1,k-1) - 2*T(n-1,k) + T(n-2,k-1) for n>2, 2<=k<=n-1. - Lechoslaw Ratajczak, Nov 07 2020
Floretion Algebra Multiplication Program, FAMP code: (a(n)) = 4jesleftforcycseq[ - .25'i + .5'k - .25i' - .5j' + .5k' - .75'ii' + .75'jj' - .25'kk' + .25'jk' - .5'ki' + .25'kj' + .25e ], apart from initial terms. 4jesrightforcycseq = A022308; 2jesforcycseq(n+2) = n+2; identity: jesleft + jesright = jes; vesforcycseq was set to the constant sequence = (-1,-1,-1,-1,-1...). (Dement)
FORMULA
G.f.: x*(1+x)*(3-2*x) / ((1-x)^2*(1-x-x^2)).
2*(n+5) = A022308(n+4) - a(n+1) (conjectured). Note offset of A022308 is 0. - Creighton Dement, Feb 02 2005
From Colin Barker, Feb 20 2017: (Start)
a(n) = -7 + (2^(-1-n)*((1-t)^n*(-19+9*t) + (1+t)^n*(19+9*t)))/t - 2*(1+n) where t=sqrt(5).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4. (End)
a(n) = Fibonacci(n+5) + 2*Fibonacci(n+3) - (2*n + 9). - G. C. Greubel, Jul 08 2019
a(n) = a(n-1) + a(n-2) + 2*n + 3 for n>2. - Lechoslaw Ratajczak, Nov 07 2020
MATHEMATICA
Table[Fibonacci[n+5] + 2*Fibonacci[n+3] -2*n-9, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
PROG
(PARI) Vec(x*(1+x)*(3-2*x) / ((1-x)^2*(1-x-x^2)) + O(x^60)) \\ Colin Barker, Feb 20 2017
(PARI) vector(40, n, f=fibonacci; f(n+5)+2*f(n+3)-(2*n+9)) \\ G. C. Greubel, Jul 08 2019
(Magma) F:=Fibonacci; [F(n+5)+2*F(n+3)-(2*n+9): n in [1..40]]; // G. C. Greubel, Jul 08 2019
(SageMath) f=fibonacci; [f(n+5)+2*f(n+3)-(2*n+9) for n in (1..40)] # G. C. Greubel, Jul 08 2019
(GAP) F:=Fibonacci; List([1..40], n-> F(n+5)+2*F(n+3)-(2*n+9)); # G. C. Greubel, Jul 08 2019
CROSSREFS
Sequence in context: A140066 A006503 A248851 * A294414 A299336 A222629
KEYWORD
nonn,easy
STATUS
approved