login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023431 Generalized Catalan Numbers. 15
1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, 438, 910, 1903, 4009, 8494, 18080, 38656, 82988, 178802, 386490, 837928, 1821664, 3970282, 8673258, 18987930, 41652382, 91539466, 201525238, 444379907, 981384125, 2170416738, 4806513660 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Essentially the same as A025246.
Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(2,-1). E.g. a(5)=7 because we have HHHHH, HHUD, HUDH, HUHD, UDHH, UHDH and UHHD. - Emeric Deutsch, Dec 25 2003
Also number of peakless Motzkin paths of length n with no double rises; in other words, Motzkin paths of length n with no UD's and no UU's, where U=(1,1) and D=(1,-1). E.g. a(5)=7 because we have HHHHH, HHUHD, HUHDH, HUHHD, UHDHH, UHHDH and UHHHD, where H=(1,0). - Emeric Deutsch, Jan 09 2004
Series reversion of g.f. A(x) is -A(-x) (if offset 1). - Michael Somos, Jul 13 2003
Hankel transform is A010892(n+1). [From Paul Barry, Sep 19 2008]
Number of FU_{k}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. This also works for U_{k}F-equivalence classes. - Sergey Kirgizov, Apr 08 2018
LINKS
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
J. Cigler, Some nice Hankel determinants, arXiv preprint arXiv:1109.1449 [math.CO], 2011.
FORMULA
G.f.: (1 - x - sqrt((1-x)^2 - 4*x^3)) / (2*x^3) = A(x). y = x * A(x) satisfies 0 = x - y + x*y + (x*y)^2. - Michael Somos, Jul 13 2003
a(n+1) = a(n) + a(0)*a(n-2) + a(1)*a(n-3) + ... + a(n-2)*a(0). - Michael Somos, Jul 13 2003
a(n) = A025246(n+3). - Michael Somos, Jan 20 2004
G.f.: (1/(1-x))*c(x^3/(1-x)^2), c(x) the g.f. of A000108. - From Paul Barry, Sep 19 2008
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)*A000108(k). (End)
(n+3)*a(n) = (2*n+3)*a(n-1) - n*a(n-2) + 2*(2*n-3)*a(n-3). - R. J. Mathar, Nov 26 2012
0 = a(n)*(16*a(n+1) - 10*a(n+2) + 32*a(n+3) - 22*a(n+4)) + a(n+1)*(2*a(n+1) - 15*a(n+2) + 9*a(n+3) + 4*a(n+4)) + a(n+2)*(a(n+2) + 2*a(n+3) - 5*a(n+4)) + a(n+3)*(a(n+3) + a(n+4)) if n>=0. - Michael Somos, Jan 30 2014
a(n) ~ (8 + 12*r^2 + 5*r) * sqrt(r^2 - 4*r + 3) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.432040800333095789... is the real root of the equation -1 + 2*r - r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Jun 15 2022
a(n) = hypergeom([(1 - n)/3, (2 - n)/3, -n/3], [2, -n], 27). - Peter Luschny, Jun 15 2022
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 13*x^6 + 26*x^7 + 52*x^8 + 104*x^9 + ...
MAPLE
a := n -> hypergeom([1/3 - n/3, 2/3 - n/3, -n/3], [2, -n], 27):
seq(simplify(a(n)), n = 0..32); # Peter Luschny, Jun 15 2022
MATHEMATICA
a[0]=1; a[n_]:= a[n]= a[n-1] + Sum[a[k]*a[n-3-k], {k, 0, n-3}];
Table[a[n], {n, 0, 40}]
PROG
(PARI) {a(n) = polcoeff( (1 - x - sqrt((1-x)^2 - 4*x^3 + x^4 * O(x^n))) / 2, n+3)}; /* Michael Somos, Jul 13 2003 */
(Haskell)
a023431 n = a023431_list !! n
a023431_list = 1 : 1 : f [1, 1] where
f xs'@(x:_:xs) = y : f (y : xs') where
y = x + sum (zipWith (*) xs $ reverse $ xs')
-- Reinhard Zumkeller, Nov 13 2012
(Magma) [(&+[Binomial(n-k, 2*k)*Catalan(k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
(SageMath) [sum(binomial(n-k, 2*k)*catalan_number(k) for k in (0..(n//3))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
CROSSREFS
Sequence in context: A262267 A068031 A293314 * A025246 A256942 A112740
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 02:21 EDT 2024. Contains 373691 sequences. (Running on oeis4.)