The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023172 Self-Fibonacci numbers: numbers n such that n divides Fibonacci(n). 45
 1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence contains all powers of 5, infinitely many multiples of 12 and other numbers (including some factors of Fib(5^k), e.g. 75025). If m is in this sequence then 5*m is (since 5*m divides 5*F(m) which in turn divides F(5*m)). Also, if m is in this sequence then F(m) is in this sequence (since if gcd(F(m),m)=m then gcd(F(F(m)),F(m)) = F(gcd(F(m),m)) = F(m)). [Max Alekseyev, Sep 20 2009] From Max Alekseyev, Nov 29 2010: (Start) Every term greater than 1 is a multiple of 5 or 12. Proof. Let n>1 divide Fibonacci number F(n) and let p be the smallest prime divisor of n. If p=2, then 3|n implying further that 4|n. Hence, 12|n. If p=5, then 5|n. If p is different from 2 and 5, then p divides either F(p+1) or F(p-1) and thus p divides either F(gcd(n,p+1)) or F(gcd(n,p-1)). Minimality of p implies that gcd(n,p-1)=1 and gcd(n,p+1)=1 (notice that p+1 being prime implies p=2 which is not the case). Therefore, p divides F(1)=1, a contradiction to the existence of such p. (End) REFERENCES S. Wolfram, "A new kind of science", p. 891 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 500 terms from T. D. Noe, next 4600 terms from Lars Blomberg) Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 75. Tamas Lengyel, Divisibility Properties by Multisection, Dec 2000. Florian Luca, Emanuele Tron, The Distribution of Self-Fibonacci Divisors, arXiv:1410.2489 [math.NT], 2014. C. Smyth, The terms in Lucas Sequences divisible by their indices, JIS 13 (2010) #10.2.4. MAPLE fmod:= proc(n, m) local M, t; uses LinearAlgebra:-Modular;     if m <= 1 then return 0 fi;     if m < 2^25 then t:= float else t:= integer fi;     M:= Mod(m, <<1, 1>|<1, 0>>, t);     round(MatrixPower(m, M, n)[1, 2]) end proc: select(n -> fmod(n, n)=0, [\$1..2000]); # Robert Israel, May 10 2016 MATHEMATICA a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[c, n]==0, Print[n]], {n, 3, 1500}] Select[Range, Mod[Fibonacci[ # ], # ]==0&] (* Harvey P. Dale *) PROG (Haskell) import Data.List (elemIndices) a023172 n = a023172_list !! (n-1) a023172_list =    map (+ 1) \$ elemIndices 0 \$ zipWith mod (tail a000045_list) [1..] -- Reinhard Zumkeller, Oct 13 2011 (PARI) is(n)=((Mod([1, 1; 1, 0], n))^n)[1, 2]==0 \\ Charles R Greathouse IV, Feb 03 2014 (MAGMA) [n: n in [1..2*10^3] | Fibonacci(n) mod n eq 0 ]; // Vincenzo Librandi, Sep 17 2015 CROSSREFS Cf. A000350. See A127787 for an essentially identical sequence. Cf. A000045, A069104, A123976, A159051, A263112. Cf. A128974 (12n does not divide Fibonacci(12n)). - Zak Seidov, Jan 10 2016 Sequence in context: A220425 A130624 A066869 * A270681 A212540 A100479 Adjacent sequences:  A023169 A023170 A023171 * A023173 A023174 A023175 KEYWORD nonn AUTHOR EXTENSIONS Edited by Don Reble, Sep 07 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 11:54 EDT 2020. Contains 335398 sequences. (Running on oeis4.)