login
A270681
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 190", based on the 5-celled von Neumann neighborhood.
4
1, 5, 12, 24, 32, 52, 60, 88, 96, 132, 140, 184, 192, 244, 252, 312, 320, 388, 396, 472, 480, 564, 572, 664, 672, 772, 780, 888, 896, 1012, 1020, 1144, 1152, 1284, 1292, 1432, 1440, 1588, 1596, 1752, 1760, 1924, 1932, 2104, 2112, 2292, 2300, 2488, 2496, 2692
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 21 2016: (Start)
a(n) = 3/2*(-1+(-1)^n)-(-5+(-1)^n)*n+n^2 for n>1.
a(n) = n^2+4*n for n>1 and even.
a(n) = n^2+6*n-3 for n>1 and odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
G.f.: (1+4*x+5*x^2+4*x^3-5*x^4-x^6) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=190; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A344846 A066869 A023172 * A212540 A344510 A100479
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 21 2016
STATUS
approved