login
A022756
Expansion of 1/Product_{m>=1} (1 - m*q^m)^32.
2
1, 32, 592, 8128, 91464, 888640, 7695744, 60684736, 442387620, 3015281632, 19383646944, 118336634048, 689923993024, 3859022174784, 20788192441664, 108201765333888, 545685611817866, 2672946940511488
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 32, g(n) = n. - Seiichi Manyama, Aug 16 2023
LINKS
FORMULA
a(0) = 1; a(n) = (32/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023
CROSSREFS
Column k=32 of A297328.
Cf. A078308.
Sequence in context: A054338 A234435 A010557 * A332262 A088914 A036903
KEYWORD
nonn
STATUS
approved