login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022021
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,20).
1
5, 20, 81, 329, 1337, 5434, 22086, 89767, 364852, 1482917, 6027219, 24497237, 99567416, 404685244, 1644816681, 6685249720, 27171759829, 110437838993, 448867366641, 1824392026070, 7415121953942, 30138277741915, 122495056843392, 497873139253657, 2023572780632275
OFFSET
0,1
COMMENTS
This coincides with the linearly recurrent sequence defined by the expansion of (5 - 4*x^2)/(1 - 4*x - x^2 + 3*x^3) only up to n <= 39. - Bruno Berselli, Feb 11 2016
LINKS
FORMULA
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
MAPLE
A022021 := proc(n)
option remember;
if n <= 1 then
op(n+1, [5, 20]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a, 'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
PROG
(PARI) a=[5, 20]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Double-checked and extended to 3 lines of data by M. F. Hasler, Feb 10 2016
STATUS
approved