OFFSET
0,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..811
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
The conjectured g.f. (6-5*x^2)/(1-17*x-x^2+14*x^3) yields the same initial terms a(0..271) but from a(272) on a different sequence. - Bruno Berselli and M. F. Hasler, Feb 11 2016
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
MAPLE
a:= proc(n) option remember;
`if`(n<2, [6, 102][n+1], floor(a(n-1)^2/a(n-2))+1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 18 2015
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 6, 1, 102, _, 1 + Floor[a[n-1]^2/a[n-2]]];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
PROG
(PARI) a=[6, 102]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
An incorrect program was removed by Alois P. Heinz, Apr 27 2019
STATUS
approved